Particle Paths Near Black Holes

Hello!  My name is Ashley Stock and this summer I had the privilege of being a summer student at MSSL, under the supervision of Prof. Kinwah Wu.  I investigated the motions of massless particles (photons) in close proximity to non-rotating (Schwarzschild) and rotating (Kerr) black holes.

Continue reading Particle Paths Near Black Holes

Advertisements

Ardingly students at MSSL: our week-long walk through the Universe

At the end of June, we had the opportunity to work at MSSL with Dr. Ignacio Ferreras for one week. As college (high school) students interested in pursuing careers in science and/or engineering, this was the perfect opportunity for us to not only get a taste of what research is like at the frontiers of science, but also to experience in first person the daily life of a scientist.

Continue reading Ardingly students at MSSL: our week-long walk through the Universe

Controlling the cosmic energy budget: Stars and supermassive black holes in galaxies

Galaxies are not simply conglomerations of stars, gas and dust. They are the building blocks of the Universe, the ultimate energy factories and at least one of them is home to intelligent life. In fact, besides the Big Bang, the origin of most electromagnetic radiation in the Universe can be traced back to galaxies. Nonetheless, the existence of supermassive black holes in galaxy centres, although now well-established, is still puzzling scientists. How did these mysterious objects come to be? When did they first form? Is there one in the centre of every galaxy? More puzzling yet, is the idea that they can regulate the formation of stars in the galaxies in which they reside.

Continue reading Controlling the cosmic energy budget: Stars and supermassive black holes in galaxies

The exceptionally long follow-up of the X-ray afterglow of GRB 130427: what it means for GRB physics.

The Swift satellite, part of which was built at the Mullard Space Science Laboratory, detected the remarkable Gamma-ray Burst (GRB) 130427A about 3 years ago. This burst has the highest fluence (energy divided by surface) of the over 1000 events detected by Swift and indeed by any space observatory for 30 years.

Continue reading The exceptionally long follow-up of the X-ray afterglow of GRB 130427: what it means for GRB physics.

Studying magnetized neutron stars thought their polarized emission

Neutrons stars are one of the final stages of the stellar evolution of a massive star, in which a compact object made mostly of neutrons is left after a supernova event[1]. With masses ~ 1.5 M and radii of the order of ~ 10 km, neutron stars have an average density of ~ 1014 – 1015 gr cm-3, which is comparable to the density of an atomic nucleus (~2 . 1014 gr cm-3). Due to their high densities, they have strong surface gravitational fields and quantum effects dominate the properties of matter in their interiors.

Continue reading Studying magnetized neutron stars thought their polarized emission

What is time – and why does it move forward?

Imagine time running backwards. People would grow younger instead of older and, after a long life of gradual rejuvenation – unlearning everything they know – they would end as a twinkle in their parents’ eyes. That’s time as represented in a novel by science fiction writer Philip K Dick but, surprisingly, time’s direction is also an issue that cosmologists are grappling with.

Continue reading What is time – and why does it move forward?