Category Archives: Astrophysics Research

A Graduate Traineeship at ESA: Working on the James Webb Space Telescope

Not all PhD students join us directly after finishing their Master degree studies. Anurag Deshpande, a first year PhD student, spent a year working at the European Space Agency (ESA), as a Young Graduate Trainee (YGT). With the application process for the next round of YGTs now open, he discusses his time working on the James Webb Space Telescope, how he found the experience, and how it continues to influence him in his PhD research.

Continue reading A Graduate Traineeship at ESA: Working on the James Webb Space Telescope

Advertisements

We saw it! A Diary of Discovery

The Swift UVOT team at MSSL find surprisingly bright UV emission from the first ever visible counterpart to a gravitational wave event. Here is their story… from Paul Kuin 

Continue reading We saw it! A Diary of Discovery

Ardingly students at MSSL: our week-long walk through the Universe

At the end of June, we had the opportunity to work at MSSL with Dr. Ignacio Ferreras for one week. As college (high school) students interested in pursuing careers in science and/or engineering, this was the perfect opportunity for us to not only get a taste of what research is like at the frontiers of science, but also to experience in first person the daily life of a scientist.

Continue reading Ardingly students at MSSL: our week-long walk through the Universe

The exceptionally long follow-up of the X-ray afterglow of GRB 130427: what it means for GRB physics.

The Swift satellite, part of which was built at the Mullard Space Science Laboratory, detected the remarkable Gamma-ray Burst (GRB) 130427A about 3 years ago. This burst has the highest fluence (energy divided by surface) of the over 1000 events detected by Swift and indeed by any space observatory for 30 years.

Continue reading The exceptionally long follow-up of the X-ray afterglow of GRB 130427: what it means for GRB physics.

Studying magnetized neutron stars thought their polarized emission

Neutrons stars are one of the final stages of the stellar evolution of a massive star, in which a compact object made mostly of neutrons is left after a supernova event[1]. With masses ~ 1.5 M and radii of the order of ~ 10 km, neutron stars have an average density of ~ 1014 – 1015 gr cm-3, which is comparable to the density of an atomic nucleus (~2 . 1014 gr cm-3). Due to their high densities, they have strong surface gravitational fields and quantum effects dominate the properties of matter in their interiors.

Continue reading Studying magnetized neutron stars thought their polarized emission

Gamma-ray astronomy with your smartphone

Cosmic rays are rays of particles and radiation emitted from various astrophysical environments, for instance shocks, Active Galactic Nuclei (AGN), Puslar Wind Nebulae and Supernova Remnants. We can observe these cosmic rays from the Earth, and their spectrum takes on a distinctive power-law shape with a peak at a few GeV (billions of electron volts, eV), and ‘knee’ features around 4 and 400 PeV (1 PeV = 1015 eV = 1 000 000 000 000 000 eV), with an ‘ankle’ at 1 EeV (1 EeV = 1018 eV). The lower energy Cosmic Rays are thought to originate within our galaxy, while higher energy ones come from further afield, providing astronomers with a different way to probe the cosmos, without using conventional observations of electromagnetic radiation.

Continue reading Gamma-ray astronomy with your smartphone

Using Explosions to see in the Dark

One of the main challenges in modern cosmology is to understand how the very low-density matter between galaxies (known as the inter-galactic medium, or IGM) came to be hot and ionized today, reaching temperatures of up to 10 million degrees. It hasn’t always been this way – after the Big Bang the Universe expanded and cooled, eventually reaching temperatures low enough for much of the Hydrogen and Helium plasma within it to combine and form a neutral atoms in a process known as recombination around 378,000 years after the Big Bang. After this, the expansion and cooling of the Universe continued for hundreds of millions of years, leaving it in a dark and increasingly cold state – an era cosmologists refer to as the ‘Dark Ages’.

Continue reading Using Explosions to see in the Dark